Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2

نویسندگان

  • Changyoun Kim
  • He-Jin Lee
  • Eliezer Masliah
  • Seung-Jae Lee
چکیده

Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toll-Like Receptor Expression in the Blood and Brain of Patients and a Mouse Model of Parkinson’s Disease

BACKGROUND Accumulating evidence supports a role for the immune system in the pathogenesis of Parkinson's disease. Importantly, recent preclinical studies are now suggesting a specific contribution of inflammation to the α-synuclein-induced pathology seen in this condition. METHODS We used flow cytometry and western blots to detect toll-like receptor 2 and 4 expression in blood and brain samp...

متن کامل

α-Synuclein Alters Toll-Like Receptor Expression

Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative st...

متن کامل

Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia

Alpha-synucleinopathies (ASP) are neurodegenerative disorders, characterized by accumulation of misfolded α-synuclein, selective neuronal loss, and extensive gliosis. It is accepted that microgliosis and astrogliosis contribute to the disease progression in ASP. Toll-like receptors (TLRs) are expressed on cells of the innate immune system, including glia, and TLR4 dysregulation may play a role ...

متن کامل

Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients

Next to α-synuclein deposition, microglial activation is a prominent pathological feature in the substantia nigra (SN) of Parkinson's disease (PD) patients. Little is known, however, about the different phenotypes of microglia and how they change during disease progression, in the SN or in another brain region, like the hippocampus (HC), which is implicated in dementia and depression, important...

متن کامل

A-synuclein Induces Microglial Cell Migration through Stimulating HIF-1a Accumulation

Microglial cell migration and infiltration plays a critical role in spinal cord injury after thoracoabdominal aortic surgery. In our previous study, a-synuclein, a presynaptic protein was shown to be released from injured neurons and cause microglial cell activation. Here, we aimed to explore the effect of a-synuclein on microglial cell migration. Primary microglial cells were isolated from Spr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016